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Fig. 1. We propose a novel physically-motivated cascaded CNN architecture for recovering arbitrary shape and spatially-varying BRDF from a single mobile
phone image. (a) Input image in unconstrained indoor environment with flash enabled. (b) Relighting output using estimated shape and SVBRDF. (c) Rendering
output in novel illumination. (d–g) Diffuse albedo, roughness, depth and surface normals estimated using our framework. (h) Normals estimated using a
single-stage network. Our cascade design leads to accurate outputs through global reasoning, iterative refinement and handling of global illumination.

Reconstructing shape and reflectance properties from images is a highly
under-constrained problem, and has previously been addressed by using
specialized hardware to capture calibrated data or by assuming known (or
highly constrained) shape or reflectance. In contrast, we demonstrate that
we can recover non-Lambertian, spatially-varying BRDFs and complex ge-
ometry belonging to any arbitrary shape class, from a single RGB image
captured under a combination of unknown environment illumination and
flash lighting. We achieve this by training a deep neural network to regress
shape and reflectance from the image. Our network is able to address this
problem because of three novel contributions: first, we build a large-scale
dataset of procedurally generated shapes and real-world complex SVBRDFs
that approximate real world appearance well. Second, single image inverse
rendering requires reasoning at multiple scales, and we propose a cascade
network structure that allows this in a tractable manner. Finally, we incor-
porate an in-network rendering layer that aids the reconstruction task by
handling global illumination effects that are important for real-world scenes.
Together, these contributions allow us to tackle the entire inverse rendering
problem in a holistic manner and produce state-of-the-art results on both
synthetic and real data.
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1 INTRODUCTION
Estimating the shape and reflectance properties of an object using
a single image acquired “in-the-wild” is a long-standing challenge
in computer vision and graphics, with applications ranging from
3D design to image editing to augmented reality. But the inherent
ambiguity of the problem, whereby different combinations of shape,
material and illumination might result in similar appearances, poses
a significant hurdle. Consequently, early approaches have attempted
to solve restricted sub-problems by imposing domain-specific priors
on shape and/or reflectance [Barron and Malik 2015; Blanz and
Vetter 1999; Oxholm and Nishino 2016]. Even with recent advances
through deep learning based data-driven priors for inverse rendering
problems, disentangling the complex factors of variation represented
by arbitrary shape and spatially-varying bidirectional reflectance
distribution function (SVBRDF) has, as yet, remained unsolved.
In this work, we take a step towards that goal by proposing a

novel convolutional neural network (CNN) framework to estimate
shape — represented as depth and surface normals — and SVBRDF —
represented as diffuse albedo and specular roughness — from a single
mobile phone image captured under largely uncontrolled conditions.
This represents a significant advance over recent works that either
consider SVBRDF estimation from near-planar samples [Aittala et al.
2016; Deschaintre et al. 2018; Li et al. 2017a, 2018], or estimate shape
for Lambertian or homogeneous materials [Barron and Malik 2015;
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Georgoulis et al. 2017; Liu et al. 2017]. The steep challenge of this
goal requires a holistic approach that combines prudent image acqui-
sition, a large-scale training dataset, and novel physically-motivated
networks that can efficiently handle this increased complexity.

Several recent works have demonstrated that a collocated source-
sensor setup leads to advantages for material estimation, since
higher frequencies for specular components are easily observed
and distractors such as shadows are eliminated [Aittala et al. 2016,
2015; Hui et al. 2017]. We use a mobile phone for imaging and mimic
this setup by using the flash as illumination. Note that our images
are captured under uncontrolled environment illumination, and not
a dark room. Our only assumption is that the flash illumination is
dominant, which is true for most scenarios.

Previous inverse rendering methods have utilized 3D shape repos-
itories with homogeneous materials [Liu et al. 2017; Rematas et al.
2016; Shi et al. 2017] or large-scale SVBRDFs with near-planar ge-
ometries [Deschaintre et al. 2018; Li et al. 2018]. While we utilize the
SVBRDF dataset of [Li et al. 2018], meaningfully applying them to 3D
models in a shape dataset is non-trivial. Moreover, category-specific
biases in repositories such as ShapeNet [Chang et al. 2015] might
mitigate the generalization ability of our learned model. To over-
come these limitations, we procedurally generate random shapes by
combining basic shape primitives on which the complex SVBRDFs
from our dataset are mapped. We generate a large-scale dataset of
216, 000 images with global illumination that reflects the distribution
of flash-illuminated images under an environment map.
Besides more descriptive datasets, disambiguating shape and

spatially-varying material requires novel network architectures that
can reason about appearance at multiple scales, for example, to un-
derstand both local shading and non-local shadowing and lighting
variations, especially in the case of unknown, complex geometry.We
demonstrate that this can be achieved through a cascade design; each
stage of the cascade predicts shape and SVBRDF parameters, but
these predictions and the error between images rendered with these
estimates and the input image are passed as inputs to subsequent
stages. This allows the network to imbibe this global feedback on
the rendering error, while performing iterative refinement through
the stages. In experiments, we demonstrate through quantitative
analysis and qualitative visualizations that the cascade structure is
crucial for accurate shape and SVBRDF estimation.
The forward rendering model is well-understood in computer

graphics, and can be used to aid the inverse problem by using a
fixed, in-network rendering layer to render the predicted shape and
material parameters and impose a “reconstruction” loss during train-
ing [Deschaintre et al. 2018; Innamorati et al. 2017; Li et al. 2018;
Liu et al. 2017; Shu et al. 2017; Tewari et al. 2018]. Tractable training
requires efficient rendering layers; thus, most previous works only
consider appearance under direct illumination. This is insufficient,
especially when dealing with arbitrary shapes. An important techni-
cal innovation of our network is a global illumination (GI) rendering
layer that also accounts for interreflections.1 While it is challenging
to directly predict the entire indirect component of an input image,
we posit that predicting the bounces of global illumination using a

1While it is possible to also consider shadows, global illumination is mainly manifested
as interreflections in our inputs due to the collocated setup.

CNN is easier and maintains differentiability. Thus, our GI render-
ing is implemented as a physically-motivated cascade, where each
stage predicts one subsequent bounce of global illumination. As a
result, besides SVBRDF and shape, the individual bounces of global
illumination are auxiliary outputs of our framework. A GI render-
ing layer also allows us to isolate the reconstruction error better,
thereby providing more useful feedback to the cascade structure.

Contributions. In summary, we make the following contributions:
• The first approach to simultaneously recover unknown shape
and SVBRDF using a single mobile phone image.

• A new large-scale dataset of images rendered with complex
shapes and spatially-varying BRDF.

• A novel cascaded network architecture that allows for global
reasoning and iterative refinement.

• A novel, physically-motivated global illumination rendering layer
that provides more accurate reconstructions.

2 RELATED WORK
Inverse rendering— the problem of reconstructing shape, reflectance,
and lighting from a set of images — is an extensively studied prob-
lem in computer vision and graphics. Traditional approaches to
this problem often rely on carefully designed acquisition systems
to capture multiple images under highly calibrated conditions [De-
bevec et al. 2000]. Significant research has also been done on the
subproblems of the inverse rendering problem: e.g., photometric
stereo methods that reconstruct shape assuming known reflectance
and lighting [Woodham 1980], and BRDF acquisition methods that
reconstruct material reflectance assuming known shape and light-
ing [Marschner et al. 1999; Matusik et al. 2003]. While recent works
have attempted to relax these assumptions and enable inverse ren-
dering in the “wild”, to the best of our knowledge, this paper is
the first to estimate both complex shape and spatially-varying non-
Lambertian reflectance from a single image captured under largely
uncontrolled settings. In this section, we focus on work that addresses
shape and material estimation from sparse images.

Shape and material estimation. Shape from shading methods re-
construct shape from single images captured under calibrated illumi-
nation, though they usually assume Lambertian reflectance [Johnson
and Adelson 2011]. This has been extended to arbitrary shape and
reflectance under known natural illumination [Oxholm and Nishino
2016]. Shape and reflectance can also be estimated from multiple im-
ages by using differential motion cues [Chandraker 2014], light field
inputs [Li et al. 2017b; Wang et al. 2017], or BRDF dictionaries [Gold-
man et al. 2010; Hui and Sankaranarayanan 2017]. Recent works
mitigate the challenge of shape recovery by using depth maps from
a Kinect sensor as input for BRDF estimation [Knecht et al. 2012; Wu
and Zhou 2015]. Other methods assume near-planar samples and
use physics-based optimization to acquire spatially-varying BRDFs
from sparse images captured under collocated illumination [Aittala
et al. 2015; Hui et al. 2017; Riviere et al. 2016]. Yu et al. [1999] assume
known geometry to recover scene reflectance by modeling global
illumination. Barron and Malik [2015] recover shape and spatially-
varying diffuse reflectance from a single image under unknown
illumination by combining an inverse rendering formulation with
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hand-crafted priors on shape, reflectance and lighting. In contrast
to these works, our deep learning approach recovers high-quality
shape and spatially-varying reflectance from a single RGB image by
combining a rendering layer with purely data-driven priors.

Deep learning for inverse rendering. Recently, deep learning-based
approaches have demonstrated promising results for several in-
verse rendering subproblems including estimating scene geome-
try [Bansal et al. 2016; Eigen and Fergus 2015], material classes [Bell
et al. 2015], illumination [Gardner et al. 2017; Georgoulis et al. 2017;
Hold-Geoffroy et al. 2017], and reflectance maps [Rematas et al.
2016]. In contrast, our work tackles the joint problem of estimating
shape and spatially-varying reflectance from just a single image.

In the context of reflectance capture, Aittala et al. [2016] propose
a neural style transfer approach to acquire stochastic SVBRDFs from
images of near-planar samples under flash illumination. Similarly,
Li et al. [2017a] acquire SVBRDFs from near-planar samples imaged
under environment lighting, using a self-augmentation method
to overcome the limitation of learning from a small dataset. Liu
et al. [2017] propose a CNN-based method, that incorporates an
in-network rendering layer, to reconstruct a homegenous BRDF
and shape (from one of four possible categories) from a single im-
age under unknown environment illumination. [Innamorati et al.
2017] use deep networks to decompose images into intrinsic compo-
nents like diffuse albedo, irradiance, specular and ambient occlusion,
which are recombined to specify a render loss. We use a similar
render loss, though our decomposition is physically-based. Meka
et al. [2018] recover homogeneous BRDF parameters of an arbi-
trary shape under environment lighting, and Li et al. [2018] and
Deschaintre et al. [2018] leverage in-network rendering layers to
reconstruct SVBRDFs from near-planar samples captured under
flash illumination. Our work can be considered a generalization of
all these methods — we handle a broader range of SVBRDFs and
arbitrary shapes. This not only places greater demands on our net-
work, but also necessitates the consideration of global illumination,
leading to two key aspects of our architecture. First, we progres-
sively refine shape and SVBRDF estimates through a novel cascade
design. Second, while previous in-network rendering layers [De-
schaintre et al. 2018; Li et al. 2018; Liu et al. 2017] only consider
direct illumination, our global rendering layer accounts for indirect
illumination too. This not only matches our inputs better, but is also
the more physically accurate choice for real scenes with complex
shapes. Further, the rendering error provided as input to our cas-
cade stages improves estimation results, which is also possible only
with a rendering layer that computes global illumination. Together,
these components leads to state-of-the-art results on a significantly
broader range of inputs.

Rendering layers in deep networks. Differentiable rendering layers
have been used to aid in the task of learning inverse rendering for
problems like face reconstruction [Sengupta et al. 2018; Shu et al.
2017; Tewari et al. 2018] and material capture [Deschaintre et al.
2018; Li et al. 2018; Liu et al. 2017]. However, these methods make
simplifying assumptions — usually Lambertian materials under dis-
tant direct lighting or planar surface with collocated point lighting
— to make these layers tractable. We also use rendering to introduce
information from varied lighting conditions, but in contrast to the

above works, our rendering accounts for global illumination. Since
analytical rendering of global illumination is challenging, we rely
on network modules to predict bounces of global illumination. The
idea of using a network to predict global illumination has also been
adopted by [Nalbach et al. 2017], but no prior method has done this
for inverse problems. Further, we use a physically meaningful net-
work structure that divides global illumination into several bounces
instead of directly predicting indirect lighting, which may lead to
better and more interpretable results. A deep network is also used
by [Marco et al. 2017] to compensate for global illumination in time-
of-flight measurements, but they use a black box network for depth
prediction while we model global illumination explicitly. There is
machinery to compensate for bounces in optimization-based meth-
ods [Godard et al. 2015], but they do not render in real-time and
there is no obvious way to back-propagate gradients, making them
unsuitable for our framework. We train a global illumination CNN
to predict multiple bounces using data generated using a novel
simulation-based strategy that renders random shapes with a large-
scale SVBRDF dataset. The use of random shapes is important, since
we aim to recover arbitrary geometry, unlike previous methods that
might incorporate semantic category-level priors [Chang et al. 2015;
Georgoulis et al. 2017; Liu et al. 2017; Meka et al. 2018; Rematas et al.
2016]. Besides higher accuracy in SVBRDF estimation, a collateral
benefit of our novel rendering layer is that it can predict individual
bounces of global illumination, in the same forward pass. These can
be subsequently used for scene analysis tasks [Nayar et al. 2006;
O’Toole and Kutulakos 2010].

Cascade networks. For prediction tasks that demand sub-pixel
accuracy, prior works have considered cascade networks. For in-
stance, convolutional pose machines [Wei et al. 2016] are devised
to obtain large receptive fields for localizing human body joints,
while other architectures such as deep pose [Toshev and Szegedy
2014] and stacked hourglass networks [Newell et al. 2016] also use
cascades for multiscale refinement. Improved optical flow estimates
are obtained by FlowNet 2.0 [Ilg et al. 2017] using cascaded FlowNet
modules that accept stage-wise brightness error as input. Similar
to the above, we show that the cascade structure is effective for
SVBRDF estimation. Uniquely, we demonstrate that our cascade
is sufficient to recover high-quality shape and SVBRDF, while our
global illumination prediction that enables rendering error as input
to the cascade stages also yields advantages for SVBRDF estimation.

3 METHOD
The input to our method is a single image of an object (with a mask)
captured under (dominant) flash and environment illumination. Re-
constructing spatially-varying BRDF (SVBRDF) and shape, in such
uncontrolled settings, is an extremely ill-posed problem. Inspired
by the recent success of deep learning methods in computer vision
and computer graphics, we handle this problem by training a CNN
specifically designed with intuition from physics-based methods. In
this section, we will describe each component of our network. The
overall framework is shown in Figure 2.
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Fig. 2. Right: Overall structure of our framework. Different colors specify different functions of the network (blue for initial estimation, green for refinement
and purple for global illumination prediction). We use a cascade of encoder-decoder networks for global reasoning and iterative refinement. Different cascade
levels do not share parameters since the input statistics at each stage and the refinements needed are different. Each cascade stage receives error feedback
through the rendered output of the previous stage. Since we handle arbitrary shapes, our rendering layer models individual bounces of global illumination.
Left: Details of hyperparameters in our physically-motivated network design. Here R represents a residual block [He et al. 2016]. cX1−kX2−sX3−dX4
represents a conv/deconv layer of output channel X1, kernel size X2, stride X3 and dilation X4. Our encoder has receptive fields large enough to model global
light illumination, skip links are added since we aim to recover fine details and large kernels are used for global illumination prediction.

3.1 Basic Architecture
Our basic network architecture consists of a single encoder and four
decoders for different shape and SVBRDF parameters: diffuse albedo
(A), specular roughness (R), surface normal (N ), and depth (D).2 For
simplicity, we start by considering the input to be an image, Ip , of an
object illuminated by a dominant point light source collocated with
the camera (we consider additional environment illumination in
Section 3.3). We manually create a mask,M , that we stack with the
image to form a four channel input for the encoder. A light source
collocated with the camera has the advantages of removing cast
shadows, simplifying the lighting conditions and easing observation
of high frequency specularities, which are crucial for solving the
inverse rendering problem. In our experiments, such input data is
easily acquired using a mobile phone with the flash light enabled.
Unlike [Li et al. 2017a], which has different encoders and decoders
for various BRDF parameters, our four decoders share features ex-
tracted from the same encoder. The intuition behind this choice is
that different shape and SVBRDF parameters are closely correlated,
thus, sharing features can greatly reduce the size of the network
and alleviate over-fitting. This architecture has been proven to be
successful in [Li et al. 2018] for material capture using near-planar
samples. Let InverseNet(·) be the basic network architecture consist-
ing of the encoder-decoder block (shown in blue in Figure 2). Then
the initial predicted shape and SVBRDF estimates (differentiated
from the true parameters by ˜ ) are given by:

Ã, Ñ , R̃, D̃ = InverseNet(Ip ,M). (1)

2A specular albedo may be considered too, but we found it sufficient to consider just
roughness to mimic most real-world appearances.

3.2 Global Illumination Rendering Layer
Prior works on material capture or photometric stereo usually as-
sume that the influence of inter-reflections can be neglected, or
consider near-planar samples where its effects are not strong. How-
ever, that may not be the case for our setup, since we consider
complex shape with potentially glossy reflectance. Failing to model
global illumination for our problem can result in color bleeding and
flattened normal artifacts. We initially considered in-network global
illumination rendering during training, but found it time-consuming
and not feasible for a large dataset. Instead we propose using CNNs
to approximate global illumination. CNNs can capture the highly
non-linear operations that global illumination manifests. In addition,
they have the advantage of being differentiable and fast to evaluate.

In particular, we use a series of CNNs, each of which predict indi-
vidual bounces of the rendered image. Let GINetn be the n-bounce
CNN. This network is trained to takes the (n − 1)-bounce image
under point light illumination, Ipn−1, and the shape and SVBRDF
parameters, and render the n-bounce image, Ĩpn , as:

Ĩ
p
n = GINetn (I

p
n−1,M,A,N ,R,D) (2)

We use an analytical rendering layer to compute the direct illu-
mination, i.e., first bounce image, Ĩp1 , given the predicted shape
and SVBRDF parameters. Then we use two CNNs, GINet2(·) and
GINet3(·), to predict the second and third bounces, Ĩp2 and Ĩ

p
3 re-

spectively. The output, Ĩpд , of our full global illumination rendering
layer (shown in purple in Figure 2) sums all the bounce images as:

Ĩ
p
2 = GINet2(Ĩ

p
1 ,M, Ã, Ñ , R̃, D̃),

Ĩ
p
3 = GINet3(Ĩ

p
2 ,M, Ã, Ñ , R̃, D̃),

Ĩ
p
д = Ĩ

p
1 + Ĩ

p
2 + Ĩ

p
3 . (3)
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1st bounce 2nd bounce 3rd bounce others
Energy ratio 95.83% 3.08% 0.89% 0.20 %

Fig. 3. Global illumination prediction results. From left to the right are
input images, the predicted second bounce images, the ground truth second
bounce images, the predicted third bounce images and the ground truth
third bounce images. Even for complex shapes with glossy material, the
predictions of our network are close to the ground truth. On the bottom,
we show the ratio between the average energy of separate bounces and the
images illuminated by a point light source across the test dataset.

As illustrated in Figure 3, most of the image intensity is contained
within three bounces, and so we only predict these, ignoring sub-
sequent bounces. Also in Figure 3, we show second and the third
bounce images predicted by our network. We observe that even for
objects with very concave shape and highly glossy material, we can
still generate rendering outputs that closely match the ground truth.
Note that a CNN-based approach like ours only approximates

true global illumination. It operates in image space and does not
explicitly model interreflections from surface points that are not
visible to the camera. However, our training data does include inter-
reflections from invisible surfaces and our collocated setup causes
interreflections from visible regions to dominate. In practice, we
have found the network to be sufficiently accurate for inverse ren-
dering. Compared with the traditional radiosity method [Cohen and
Wallace 1993], our network-based global illumination prediction has
the advantage of being fast, differentiable and able to approximate
reflections from invisible surfaces. However, it is an approximation,
since we do not have precise geometry, form factors or material
(albedo) properties, as in conventional radiosity algorithms.

3.3 Environment Map Prediction
Although we use a dominant flash light, our images are also illu-
minated by unknown environment illumination. This environment
illumination can significantly affect the appearance of globally illu-
minated complex shapes. This requires us to estimate the environ-
ment illumination and account for it in our rendering networks. To
do so, we approximate environment lighting with low-frequency
spherical harmonics (SH), and add another branch to our encoder-
decoder structure to predict the first nine SH coefficents for each
color channel. We observe that the background image provides
important context information for the network to determine en-
vironment lighting. So, unlike the point light source case, we add
the image with background as the third image to the input. Let
E be environment lighting, Ipe be the image of the object under

both point and environmental lighting andM ⊙ Ipe be its masked
version. With some abuse of notation, now our shape and SVBRDF
parameters are computed using

Ã, Ñ , R̃, D̃, Ẽ = InverseNet(Ipe ,M ⊙ Ipe ,M). (4)

Since now the input image is captured under environment illumi-
nation and the flash light source, we modify our rendering layer
to account for this. We follow the method of [Ramamoorthi and
Hanrahan 2001] to render an image of the object, Ĩe , using the es-
timated spherical harmonics illumination. This only considers the
Lambertian shading and ignores high-frequency specular effects.
In practice, this is sufficient because most high-frequency effects
are observed under flash illumination, and our experiments show
that this simple approximation suffices for achieving accurate BRDF
reconstruction. Now the output of the global illumination rendering
layer (in place of Equation 3) is given by:

Ĩ
pe
д = Ĩ

p
1 + Ĩ

p
2 + Ĩ

p
3 + Ĩ

e . (5)

3.4 Cascade Structure
While a single encoder-decoder leads to good results for SVBRDF
estimation with near-planar samples [Li et al. 2018], it does not
suffice when considering arbitrary shapes. This can be attributed to
the increased complexity of the problem and a need for more global
reasoning. We propose a cascade structure that achieves these aims
by using iterative refinement and feedback to allow the network
to reason about differences between the image rendered with the
predicted parameters and the input image.
Let CascadeNetn be stage n of the cascade network. Each stage

has the same single architecture as InverseNet. Let the shape, re-
flectance and lighting parameters of cascade stage n be Ãn , Ñn , R̃n ,
D̃n and Ẽn , and the result of rendering these parameters (using the
global illumination rendering network) be Ĩpeд,n . Each cascade stage
refines the predictions of the previous stage as:

Errn−1 = M ⊙ Ipe − Ĩ
pe
д,n−1 (6)

Ãn , Ñn , R̃n , D̃n , Ẽn = CascadeNetn (Ipe ,M ⊙ Ipe ,M,

Ãn−1, Ñn−1, R̃n−1, D̃n−1,Errn−1) (7)

The inputs to each cascade stage are the input image, the shape,
SVBRDF, and lighting predictions from the previous stage, and the
rendering error associated with these previous predictions (with
respect to the input image). This allows each cascade stage to refine
the predictions by reasoning about the rendering error from the
previous stage. Note that this is possible only because of our network
design that models global illumination and environment lighting.

3.5 Training Details
Training Data: To the best of our knowledge, there is no exist-

ing dataset of objects with arbitrary shape rendered with complex
SVBDRF. Complex SVBRDF datasets used in previous work [De-
schaintre et al. 2018; Li et al. 2018] assume near-planar surfaces, and
rich shape datasets like ShapeNet [Chang et al. 2015] have simple
homogeneous BRDFs. Thus, we generate our own synthetic dataset
by procedurally adding shapes to build a complex scene. Similar
to [Xu et al. 2018], we first generate primitive shapes (cube, ellip-
soid, cylinder, box and L-shape) and then add a randomly generated
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height map to make them more complex and diverse. We build
scenes by randomly sampling 1 to 5 shapes and combining them.
We create 3600 scenes, using 3000 for training and 600 for testing.

We use SVBDRFs from the Adobe Stock material dataset3, which
contains 694 complex SVBRDFs spanning a large range of material
types. Each SVBRDF is comprised of 4K texture maps for diffuse
albedo, specular roughness, and surface normals. For data augmen-
tation, we randomly crop, rotate and scale the texture maps to create
different size patches and then resize all the patches to the same
size of 256 × 256. We create 270 patches for each materials and
use these patches as the materials to render dataset. We uses the
physically motivated microfacet BRDF model in [Karis and Games
2013]. Please refer to the supplementary material for details.

We remove the 6 transparent materials and use the remaining 688
materials. We classify the materials into 8 categories according to
their reflectance properties and proportionally sample 588 materials
for training and 100 for testing. For environment maps, we use the
Laval Indoor HDR dataset [Gardner et al. 2017] containing 2144
environmental maps of indoor scenes, of which we use 1500 to
render the training dataset and 644 for the test dataset.

We use Optix for GPU-accelerated rendering, based on path trac-
ing with multiple importance sampling. We render with 400 samples
per-pixel for point light source illumination and 625 samples per-
pixel when the environment map is also included. The average
rendering time is less than 2 seconds. For each scene, we sample
12 viewing directions, 5 groups of different SVBDRFs and one en-
vironment map. When rendered with both point and environment
lighting, we scale the environment map by 0.5, to keep the average
ratio between image intensities rendered with only environment
map and with point light to be 0.09285. This matches the statistics of
images captured using mobile phones in real indoor environments.

Network Design: Our design makes several choices to reflect
the physical structure of the problem. We use the U-net architec-
ture [Ronneberger et al. 2015] for InverseNet. To model the global
fall-off of the point light source, it is necessary to have large recep-
tive fields. Thus, each encoder has 6 convolutional layers with stride
2, so that each pixel of the output can be influenced by the whole
image. For the SVBDRF parameters, we use transposed convolu-
tions for decoding and add skip links to recover greater details. For
environment map estimation, we pass the highest level of feature
extracted from the encoder through two fully connected layers to
regress the 9 spherical harmonics coefficients. Each CascadeNet
stage uses 6 residual blocks — 3 blocks for the encoder and 3 sep-
arate blocks for each decoder. We use dilated convolutions with a
factor of 2 in the residual block to increase the receptive field. We
feed environment lighting predictions into the next cascade stage by
passing the nine SH coefficients through a fully connected layer and
concatenate them with the feature extracted from the encoder. We
also use the U-net structure with skip-links for GINet. To predict
global illumination, the network must capture long range depen-
dencies. Thus, we use a convolutional layer with large kernel of size
6, combined with dilation by a factor of 2. The network architecture
of each component is shown on the right side of Figure 2.

3https://stock.adobe.com/3d-assets

Loss function: Wehave the same loss function for both InverseNet
and each CascadeNet stage. For diffuse albedo, normal, roughness
and environment illumination SH coefficients, we use the L2 loss for
supervision. Since the range of depths is larger than that of other
BRDF parameters, we use an inverse transformation to project the
depth map into a fixed range. Let d̃i be the initial output of depth
prediction network of pixel i; the real depth di is given by

di =
1

σ · (d̃i + 1) + ϵ
. (8)

We set σ = 0.4 and ϵ = 0.25, and use L2 loss to supervise di . Finally,
we add a reconstruction loss based on the L2 distance between
the image rendered with predicted and ground truth parameters.
Let La , Ln , Lr , Ld , Lenv and Lr ec be the L2 losses for diffuse
albedo, normal, roughness, depth, environment map and image
reconstruction, respectively. The loss function of our network is:

L = λaLa + λnLn + λrLr + λdLd + λenvLenv + λr ecLr ec , (9)

where λa = λn = λr ec = 1, λr = λd = 0.5 and λenv = 0.1 are
parameters chosen empirically.

Training Strategies: Training multiple cascade structures is dif-
ficult since the enhanced network depth may lead to vanishing
gradients and covariate shift, preventing convergence to a good
local minimum. Further, batch sizes will need to be small when
training all stages together, which can cause instability. Thus, in-
stead of training the whole network end-to-end, we sequentially
train each stage of the cascade. This allow us to use a relatively large
batch size of 16. We use Adam optimizer, with a learning rate of
10−4 for the encoder and 4× 10−4 for the decoders. We decrease the
learning rate by half after every two epochs. The three stages are
trained for 15, 8 and 6 epochs, respectively. We use twoCascadeNet
stages and train InverseNet and CascadeNet1 with 2500 shapes
and add 500 shapes to train CascadeNet2.

GINet is trained prior to the BRDF prediction network, then
held fixed and only used for the rendering layer when training the
network for shape and SVBRDF estimation. We use Optix to render
images with separate bounces and use them for direct supervision.
We train for 15 epochs, with an initial learning rate of 2 × 10−4 and
reduce it by half every two epochs.

4 EXPERIMENTS
We first demonstrate the effectiveness of each design choice in our
network architecture through detailed comparisons on both syn-
thetic and real datasets. Next, we compare with previous methods
for shape and material estimation to highlight the highly accurate
shape and SVBRDF recovered by our framework. Please refer to sup-
plementary video for more visualizations of the results (including
under novel lighting and viewpoint).

Ablation study on synthetic data. We first justify the necessity
of rendering a novel large-scale dataset with global illumination
for shape and SVBRDF estimation. We train InverseNet on images
rendered with direct illumination and test on images with global
illumination. Column Impd−C0 (trained on images with direct point
illumination with no cascade) in Table 1 reports the obtained errors,
which are clearly larger than those in column Impg−C0 for the same
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Table 1. Quantitative comparison on images rendered only with point light.
Impd refers to input images rendered with direct lighting only, while Impg
means the input images are rendered with global illumination.

Impd−C0 Impg−C0
Albedo(10−2) 5.911 5.703
Normal(10−2) 4.814 4.475
Roughness(10−1) 1.974 1.966
Depth(10−1) 1.842 1.772

Albedo Normal Roughness Depth
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Fig. 4. Comparison of SVBRDF and depth outputs of two networks, trained
on directly illuminated (top) and globally illuminated images (middle), when
evaluated on an input with global illumination. Not considering indirect
lighting during training leads to flatter normals and brighter albedo.

network trained on images with point lighting and global illumina-
tion. Thus, global illumination has a significant impact on depth and
SVBRDF estimation. The qualitative comparison in Figure 4 shows
that the network trained with direct lighting only predicts brighter
diffuse albedo and flattened normals, when evaluated on images
with indirect lighting. This also matches intuition on the behavior
of inter-reflections [Chandraker et al. 2005; Nayar et al. 1991].
Next we demonstrate that context information is important for

the network to reconstruct shape and BRDF under environment
lighting. We train two variants of our basic network, one with
masked image input, Impeg −C0, and the other with both masked and
original image as input, Impeg −bg−C0. Quantitative comparisons in
the first two columns of Table 2 show that predictions for all BRDF
parameters improve when background is included.
To test the effectiveness of cascade structure, we first add one

layer of cascade to our basic network. We try two variants of cascade
network. For the black-box cascade (C1), we stack the input image
and the predicted BRDF parameters and send them to the next stage
of the cascade. For the cascade network with error feedback (C1Er),
we also send an error map as input by comparing the output of our
global illumination rendering layer with the input. The quantitative
numbers (third and fourth column of Table 2) suggest that having
the error feedback improves BRDF reconstruction. We then add

Input image

GI prediction

A
lb

ed
o 

eBgIm-C  ENoG2 eBgIm-C  E2 Ground truth

Fig. 5. For an input image with strong indirect lighting (top left), a network
trained without global illumination for the rendering layer (second column)
retains more color bleeding artifacts in the estimated diffuse albedo, than
one trained with global illumination (third column). The bottom left figure
shows the net global illumination estimated by the final network.

another cascade stage with error feedback, which yields even more
accurate BRDF estimation (C2Er) that we deem the final output.
Figure 6 shows the visual quality of BRDF estimation from different
stages of the cascade network. We observe that for both synthetic
and real data, the cascade reduces noise and artifacts. The final
rendered result using the BRDF parameters predicted by the second
level of the cascade is very similar to the input image, as shown in
Figure 6 using both the environment map estimated by the network
and a novel environment map.
Next, we analyze the effect of the global illumination rendering

network. We train two new variants of our global illumination ren-
dering layer for the second cascade stage. For Impeg −bg−C2ErNoG,
the rendering layer does not consider global illumination so that the
error feedback is computed by subtracting the sum of Ĩp1 and Ĩe from
the inputM⊙Ipe , i.e., Ĩpe = Ĩ

p
1 +Ĩ

e . Similarly, for Impeg −bg−C2ErNoE,
we remove the environmental map component of the global illumi-
nation rendering layer. The error feedback for the cascade network
is now computed using Ĩpe = Ĩ

p
1 + Ĩ

p
2 + Ĩ

p
3 . Table 2 shows that our

full version of rendering layer performs the best. The differences
are measurable but subtle, since the remaining impact of environ-
ment lighting and global illumination for the second stage is small.
To better understand the behavior, we show a qualitative example
with global illumination in Figure 5. We observe that the global
illumination rendering layer alleviates color bleeding artifacts.

Generalization to real data. We demonstrate our method on sev-
eral real objects in Figures 7 and 8. All images are captured in indoor
scenes using an iPhone 10 with the flash enabled. We use the Adobe
Lightroom app to capture linear images and manually create the seg-
mentation mask. For all the examples, our rendered results closely
match the input. Figures 7 and 8 also show our predicted BRDF
parameters can be used to render realistic images under new en-
vironment lighting and camera pose. This demonstrates that our
estimates of the surface normal and spatially varying roughness are
of high enough quality to render realistic specular effects of real
objects under novel illumination and viewing directions. Please see
the supplementary material and videos for further examples.
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Table 2. Quantitative comparisons L2 errors illustrating the influence of various network choices. Impeg means the input images are illuminated by both point
light source and environmental lighting (superscript pe) and rendered with global illumination (subscript g).−bg means the images without masking the
background are added as an input. Cn shows the level of cascade refinement, where C0 means we use our basic InverseNet without any refinement. Er behind
Cn means we also send the error maps by comparing the images rendered with the estimated BRDFs and the inputs to the cascade refinement networks. The
subscript NoE and NoG in the last two columns means that when computing the error maps, we do not consider the influence of environmental lighting and
global illumination respectively. Here, Impeg −bg−C2Er is the error obtained with our final two-cascade architecture with global illumination and error feedback.

Impeg −C0 Impeg −bg−C0 Impeg −bg−C1 Impeg −bg−C1Er Impeg −bg−C2Er Impeg −bg−C2ErNoE Impeg −bg−C2ErNoG
Albedo(10−2) 6.089 5.670 5.150 5.132 4.868 4.900 4.880
Normal(10−2) 4.727 4.580 3.929 3.907 3.822 3.830 3.822
Roughness(10−1) 2.207 2.064 2.004 2.011 1.943 1.948 1.947
Depth(10−2) 1.945 1.871 1.631 1.624 1.505 1.512 1.511
Bounce 1(10−3) 3.526 3.291 2.190 2.046 1.637 1.643 1.643
Bounce 2(10−4) 2.88 2.76 2.47 2.47 2.45 2.45 2.46
Bounce 3(10−5) 6.6 6.4 5.9 5.9 . 5.8 5.8 5.8

Initial Cascade 1 Cascade 2 Ground truth Initial Cascade 1 Cascade 2
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Fig. 6. Effect of our cascaded design, illustrated for synthetic (left) and real data (right). It is observed that predictions from the initial network are somewhat
inaccurate, but progressively improved by the cascade stages. Images rendered after two cascade stages have less artifacts and display specular highlights
closer to the ground truth, both when relit with the estimated environment map and rendered under a new environment map. We visualize the absolute error
for the BRDF parameters in the third column except the depth error. The depth error is normalized so that the range of ground-truth depth is 1.
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Input Rendered result Di�use albedo Normal Depth Roughness Rendered Image

Fig. 7. Results on real objects. For each example, we show the input image, the rendered output using the estimated shape and BRDF parameters, as well as
visualization under a novel illumination condition. In each case, we observe high quality recovery of shape and spatially-varying BRDF.

Input Di�use albedo Normal Depth Roughness Novel view 1 Novel view 2

Fig. 8. Results rendered from novel views. We show the input image, the estimated shape and BRDF parameters and the rendered output under an environment
map from two novel views. We observe high fidelity rendered images, as well as high quality recovery of shape and spatially-varying BRDF.
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Fig. 9. Comparison with SIRFS [Barron and Malik 2015]. Our method accurately estimates the shape and diffuse color, even in regions with specularity. In
contrast, because of the complex shape and materials of these objects, SIRFS, which assumes Lambertian reflectance, produces very inaccurate estimates.

Comparisons with previous methods. Since we are not aware of
prior works that can use a single image for spatially varying BRDF
and shape estimation, our comparisons are to more restricted meth-
ods for shape and material estimation, or to intrinsic image decom-
position methods. We first compare with SIRFS [Barron and Malik
2015] which jointly reconstructs shape and diffuse color. Figure 9
compares the diffuse albedo and normal estimated using SIRFS with
those obtained by our framework, on both real and synthetic data. In
both cases, our estimates are significantly better. Notice that SIRFS
tends to over-smooth both the diffuse color and the normal due to
a handcrafted regularization. In contrast, our method successfully
recovers high-frequency details for both diffuse albedo and surface
normals, even in specular and shadowed regions.

Input Shi et al. 2017 Ours Ground truth

Fig. 10. Comparison with [Shi et al. 2017]. While Shi et al. train to handle
non-Lambertian reflectance, the accuracy and visual quality of our diffuse
albedo is significantly higher on both synthetic (top) and real data (bottom).

We also compare with the recent intrinsic image decomposition
method of [Shi et al. 2017], which is trained to separate diffuse
and specular components from a single image of a ShapeNet object
[Chang et al. 2015], rendered under the assumption of a parametric
homogeneous BRDF. We compare to their diffuse albedo prediction
in Figure 10. Our method can better preserve occlusion boundaries
and recover accurate diffuse color even in specular regions. Our
method also yields qualitatively superior results on real data.

Limitations. A few challenges remain unaddressed. Our network
does not explicitly handle improperly exposed images. For example,
saturations from the flash may cause the specular highlight to be
baked into the diffuse color (such as the orange in the third row of
Figure 7). This problem might be solved by adding more training
data and usingmore aggressive data augmentation. As discussed pre-
viously, long-range interactions might not be sufficiently modeled in
our image-space CNN, which may limit its ability to correctly han-
dle interreflections. We find spatially varying roughness prediction
to be a challenging problem. The presence of specular highlights is
important for it and the network may rely on connectivity priors
to predict roughness. However, this prior may fail, which results in
the same material having different roughness values (such as the
owl in the second row of Figure 8). Such a prior might be explicitly
enhanced to improve performance by using a densely connected
CRF [Ristovski et al. 2013] or bilateral filter [Barron and Poole 2016].
Another possibility would be to take shape-material correlations
into account. From Figure 6, we can see that the error of depth
prediction is significantly larger than the normal prediction, which
suggests that we may use normal predictions to refine depth pre-
dictions [Nehab et al. 2005]. Despite these limitations, we note that
our network achieves significantly better results than prior works
on this challenging, ill-posed problem.

5 CONCLUSION
We demonstrate the first approach for simultaneous estimation of
arbitrary shape and spatially-varying BRDF, using a single mobile
phone image. We make several physically-motivated and effective
choices across image acquisition, dataset creation and network ar-
chitecture. We use a mobile phone flash to acquire images, which
allows observing high frequency details. Our large-scale dataset
of procedurally created shapes, rendered with spatially-varying
BRDF under various lighting conditions, prevents entanglement of
category-level shape information with material properties. Our cas-
caded network allows global reasoning through error feedback and
multiscale iterative refinement, to obtain highly accurate outputs for
both shape and material. We propose a novel rendering layer to in-
corporate information from various lighting conditions, which must
account for global illumination to handle arbitrary shape. Inspired
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by the physical process of rendering bounces of global illumination,
we devise a cascaded CNN module that retains speed and simplicity.
Extensive experiments validate our network design through high-
quality estimation of shape and SVBRDF that outperforms previous
methods. In future work, we will demonstrate applications of our
framework to material editing and augmented reality, as well as
consider extensions to large-scale scenes such as room interiors.
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