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Abstract

We develop a method to acquire the BRDF of a homogeneous flat
sample from only two images, taken by a near-field perspective
camera, and lit by a directional light source. Our method uses
the MERL BRDF database to determine the optimal set of light-
view pairs for data-driven reflectance acquisition. We develop a
mathematical framework to estimate error from a given set of mea-
surements, including the use of multiple measurements in an image
simultaneously, as needed for acquisition from near-field setups.
The novel error metric is essential in the near-field case, where we
show that using the condition-number alone performs poorly. We
demonstrate practical near-field acquisition of BRDFs from only
one or two input images. Our framework generalizes to configu-
rations like a fixed camera setup, where we also develop a simple
extension to spatially-varying BRDFs by clustering the materials.

Keywords: rendering, reflectance, BRDF, MERL, reconstruction

Concepts: •Computing methodologies → Reflectance model-
ing;

1 Introduction

Accurate BRDF models are critical for realistic image synthe-
sis. Many analytic BRDF models have been proposed [Torrance
and Sparrow 1967; Ward 1992]. However, the greatest fidelity
is obtained by data-driven reflectance, such as the MERL BRDF
database of 100 real materials [Matusik et al. 2003a].

In this paper, we focus on the canonical problem of measuring the
3D isotropic BRDF of a flat sample of homogeneous material. The
conventional approach is to use a gonioreflectometer, laboriously
sampling illumination-view pairs [Foo 1997]. However, fully sam-
pling a 3D isotropic BRDF domain can require thousands or mil-
lions of samples, making this approach very expensive. Mirror-
based imaging setups [Ward 1992] can reduce some dimensions,
but still require a large number of samples. They also need more
complex setups, and can be difficult to calibrate.

Recently, [Nielsen et al. 2015] presented a significant reduction in
the number of samples needed to about 20, assuming the BRDF lies
approximately in the subspace of the MERL BRDF database. They
leverage a logarithmic mapping (originally proposed for BRDF fac-
torization by [McCool et al. 2001]). They then optimize sampling
directions to minimze the condition number of the related acquisi-
tion matrix (an approach first proposed by [Matusik et al. 2003b]).
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Figure 1: By utilizing the field of view of a camera (A), many ra-
diance observations can be acquired in parallel, to enable efficient
BRDF measurement from a homogeneous flat material sample (we
assume a near-field camera and distant light source). We demon-
strate that as little as 2 view/light configurations enable accurate
reconstruction for most materials. The two input images are shown
in (B); our acquisition uses data from the circular center of the sam-
ple outlined, which may appear elliptical at oblique angles. Qual-
itatively, the first image captures the overall shape and intensity of
the specular highlight and diffuse color. The second image captures
grazing angles and Fresnel effects, also refining diffuse shading.
From these inputs, we reconstruct a full measured BRDF, which can
be visualized on a sphere or used for rendering (C); input material
samples are shown in the insets and in results in Fig. 11.

However, there are several limitations of [Nielsen et al. 2015]. First,
they use a gantry-based system, where each “measurement” is ac-
tually a full 2D image seen by the camera. However, this additional
information is not used in their work, providing only a single ob-
servation. We seek to exploit the additional degrees of freedom
by acquiring multiple BRDF measurements simultaneously, using
a near-field camera, so each point on the sample corresponds to
a slightly different viewing direction. In this paper, we demon-
strate an improved minimal BRDF sampling method for near-field
acquisition. Indeed, accuracy comparable to the 20 measurements
in [Nielsen et al. 2015] is achievable with only two near-field im-
ages, and high-fidelity results are sometimes achieved with a single
image, with field-of-view only about 25◦, as shown in Figs. 1, 2.

A major technical challenge is finding the optimal light-view direc-
tions. The conventional condition number metric is not adequate,
since it can increase dramatically (or even go to infinity) for a set of
closely-related near-field measurements. While the measurements
are no longer completely independent, they do provide additional
information. Even for the goniometric case in [Nielsen et al. 2015],
we show that condition number does not fully model the error.

We therefore develop an entirely new framework to accurately esti-
mate the error in BRDF acquisition from a set of samples, consid-
ering both deviation from the ideal (noise, BRDF not fitting MERL
data), and accuracy of reconstruction based on where samples are
located (Fig. 3). The condition number only approximates er-
ror from the first term (noise), while we usually want to minimize
the latter term (reconstruction error). Our framework enables sig-
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Figure 2: Simulations on MERL BRDF database for one and two-shot near-field BRDF measurement. BRDFs shown are not used at all in
analysis/choosing the optimal directions. The sample subtends an angle of 25◦ when camera is at the zenith (we consider a circular region,
sample images elliptical when viewed at an oblique angle; see Figs. 4, 9). After sample label, first 3 columns show single image near-field
acquisition, with input, our method and previous work with 5 point samples. The next 4 columns show two image acquisition with inputs,
our method, and previous work with 20 point samples. The reference image is shown rightmost. Single-shot measurement is comparable to 5
samples in [Nielsen et al. 2015]. Near-reference quality images, comparable to 20 samples in [Nielsen et al. 2015], are obtained with two-
shot meaurement. For very broad specularities like light red paint, we do not fully observe the highlights in the input images, and therefore
slightly underestimate their width. The supplementary material has results for simulations on all of the MERL BRDF materials.

nificantly better reconstruction error for the multiple-measurement
near-field setup (Fig. 5). We make the following contributions:

Novel Theoretical Analysis: We develop a new framework to
predict the error in BRDF acquisition from sampling a particular
set of directions (Sec. 4), that extends naturally to multiple mea-
surements and allows for optimization (Sec. 5).

Optimal BRDF Sampling Directions: We provide optimal
light-view directions for the near-field case (Sec. 6), showing how
multiple simultaneous BRDF measurements can dramatically re-
duce the number of images (see Fig. 2 for simulations on MERL
database). The new error framework also provides improved accu-
racy even for point-sampled measurement (Appendix B).

Practical BRDF Acquisition: We develop BRDF measurement
using only two near-field images (two-shot), and we demonstrate
results on several real examples (Sec. 7). We also briefly explore

extensions to a fixed camera setup with two light directions (Sec. 8),
including a simple first step towards acquiring spatially-varying
BRDFs by clustering materials.

2 Related Work

We focus on measured data-driven BRDFs. A few recent works
have evaluated and developed improved parametric fits to the
MERL BRDF database [Ngan et al. 2005; Low et al. 2012; Brady
et al. 2014]. Earlier, Lensch et al. [2003] proposed adaptive sam-
pling of a BRDF, based on the uncertainty of the parametric fit.
Fuchs et al. [2007] also proposed an adaptive sampling approach,
but first require a relatively dense grid of samples. Our approach ac-
tually requires less data (only one or two images), is more accurate,
and requires only linear solution, rather than non-linear optimiza-
tion. Our method is also conceptually related to other areas, such
as the use of key points for animation [Meyer and Anderson 2007].



We briefly review related work in efficient BRDF acquisition below.

Basis and Environment Lighting: One approach to speed up
BRDF acquisition is to use basis functions for complex illumina-
tion [Ghosh et al. 2007; Aittala et al. 2013; Tunwattanapong et al.
2013]. Our setup is simpler and requires fewer measurements, en-
abling direct BRDF measurement from a directional source, with-
out any deconvolution. Other work has dealt with (uncontrolled)
environment lighting [Romeiro et al. 2008; Romeiro and Zickler
2010], but requires non-linear regularization and priors.

Image-Based BRDF Acquisition: The MERL database was
acquired by Matusik et al. using image-based BRDF measure-
ment [Marschner et al. 2000] on spheres. Our approach is con-
ceptually similar, making use of images rather than point measure-
ments, but works with conventional flat surfaces (not all BRDFs are
easily found as, or can be wrapped on, spheres). Earlier, Karner et
al. [1996] fit anisotropic BRDFs to images of a flat sample, but re-
quired a parametric model. A variety of other optical setups acquire
multiple samples simultaneously, including [Ward 1992; Dana and
Wang 2004; Noll et al. 2013]. These methods usually require com-
plex imaging setups, which are hard to calibrate.

One and Two Shot Approaches: Most recently, Aittala et
al. [2015] proposed a two-shot spatially-varying BRDF capture
setup, but it is aimed at reproducing the “texture” of material
samples, rather than a complex measured BRDF. Earlier, [Hertz-
mann and Seitz 2003] used reference BRDFs to recover shape and
spatially-varying reflectance. Ren et al. [2011] developed a pocket
reflectometry method, comparing to reference tiles, using a hand-
held light source and fixed camera. In contrast, we do not require
a physical reference since we can leverage the MERL database,
which also has a much broader set of reference materials.

Industry Material Standards: Beyond computer graphics, the
materials industry has developed a number of standards for mea-
suring and characterizing reflectance. [Hunter and Judd 1939] pro-
poses a single measurement at 60◦ perfect reflection. The ASTM
Standard D523 for measuring gloss adds near-normal and grazing
angle measurements at 85◦ and 20◦ [Hunter 1987]. We extend this
approach by considering near-field measurements. Our optimal sets
of one and two measurements produce results that are close to the
above observations, but are based on rigorously minimizing the ex-
pected error. Moreover, we can recover a full accurate data-driven
BRDF, since we consider multiple measurements over the entire
sample. Additional works in graphics include the five measurement
directions in [Westlund and Meyer 2001], which are improved on
by [Nielsen et al. 2015] and further refined by our method.

3 Background

In this section, we briefly discuss necessary background on using
the MERL database [Matusik et al. 2003a] for BRDF measurement,
following [Nielsen et al. 2015]. We conclude by providing intuition
for why the condition number metric is not ideal, especially in the
near-field lighting case, a result that may also impact other prob-
lems involving sparse sampling and reconstruction in graphics.

BRDF Database and Processing: The database consists of 100
materials. Each material is represented using p = 1, 458, 000 ex-
haustive measurements of the 3D isotropic BRDF volume in the
(θh, θd, φd) parameterization [Rusinkiewicz 1998] (Fig. 4), with
resolution 90 × 90 × 180 degrees. Following [Nielsen et al.
2015], we treat each color channel separately, effectively obtaining
m = 300 database BRDFs. We also apply their log-relative map-
ping (inspired by the logarithmic transform proposed in [McCool
et al. 2001]). BRDF ρ is transformed to ln [(ρw + ε)/(ρrefw + ε)],
where ε = 0.001 avoids division by zero, ρref is the reference or

(per-observation) median BRDF, and the weight w is simply the
maximum of the cosine of incident and outgoing angles. In this pa-
per, we deal only with these log-mapped BRDFs. Inverse mapping
is done at the end to obtain the final measured BRDF.

BRDF Principal Components: Let X ∈ Rm×p be the full ma-
trix of all MERL BRDF observations, where the rows are mapped
BRDFs and the columns are a particular direction. We use the prin-
cipal components Q, obtained by performing a singular-valued de-
composition (SVD) after subtracting the mean BRDF,

X − µ̂ = UΣV T Q = V Σ, (1)

where it is convenient to include the singular values in Q ∈ Rp×k.
k is the number of principal components we consider (in our case,
k = m, but one could use fewer components). The columns of
Q are the scaled eigenvectors of the covariance, and correspond
to a basis for the space of BRDFs. A particular BRDF x may be
obtained as a linear combination of the basis,

x = Qc+ µ, (2)

where c ∈ Rk×1 is a vector of coefficients. µ ∈ Rp×1 is the mean
BRDF, while µ̂ ∈ Rm×p is a matrix, repeating µT over m rows.

Solving for the Measured BRDF: In practice, we observe x at
some sample observations, from which we seek to estimate c,

x̃− µ̃ = Q̃c, (3)

where the tildes indicate that we have a reduced set of observations
at n samples, with µ̃ and x̃ ∈ Rn×1. Q̃ ∈ Rn×k is the set of
rows in Q corresponding to the set of reduced observations. It is
also convenient to define y = x− µ, with ỹ = x̃− µ̃ and Q̃c = ỹ.
Finally, let S ∈ Rn×p be a selection matrix that is zero everywhere,
except that Sij = 1 in row i iff j is the direction corresponding
to observation i. We can now define the reduced Q̃ = SQ and
ỹ = Sy, which will be useful for the error analysis in Sec. 4.

In [Nielsen et al. 2015], n � p,m, and typically n ∼ 20. In our
case, for near-field imaging, we have fewer image captures (typi-
cally only one or two), but we have several observations at each im-
age, since we make use of the full 2D image. n can now be larger
and, in some cases, could even be greater than m. However, the
near-field samples are correlated, having the same light and similar
view directions, so conceptually we still have a reduced matrix.

The above equation can be solved for the coefficients using
Tikhonov regularization (I is the identity matrix. We set η = 40;
we find results are not sensitive to this regularization parameter),

c = argmin| (x̃− µ̃)− Q̃c|2 + η|c|2 =
(
Q̃T Q̃+ ηI

)−1
Q̃T ỹ. (4)

A useful intuition is to consider a closed-form expression for the
regularized inverse. Assuming the full SVD of Q̃ = AΛBT ,

Q̃+
η =

(
Q̃T Q̃+ ηI

)−1

Q̃T = BΛ+
η A

T , (5)

where Λ+
η is a diagonal matrix with the same shape as Λ, but with

a modified set of singular values: σ → σ/(σ2 + η). Note that the
pseudo-inverse Q̃+ and Λ+ are obtained by setting η = 0, in which
case Q̃+ = BΛ+AT as expected. In essence, the regularization
term creates a η−modified pseudo-inverse where the inversion of
small singular values does not blow up.

Optimizing Sampling Directions: In [Matusik et al. 2003b;
Nielsen et al. 2015], the optimal sampling directions (the rows of Q̃



chosen, or equivalently the selection matrix S with Q̃ = SQ) are
found by optimizing (minimizing) the condition number,

κ(Q̃) =
σmax(Q̃)

σmin(Q̃)
, (6)

where σmax and σmin are the maximum and minimum singular val-
ues of Q̃. The condition number is a standard numerical tool, and
reducing it minimizes the sensitivity to noise and related errors.

Formally, consider a matrix equation such as equation 3, with Q̃c =
ỹ (with ỹ = x̃−µ̃ as usual). The condition number is the worst case
(upper bound) estimate of the ratio of fractional error δc in output
to fractional error/noise δỹ in input,

|δc|/|c|
|δỹ|/|ỹ| ≤ κ(Q̃). (7)

3.1 Limitations of Using the Condition Number

The condition number gives good results for point-sampled BRDF
measurement [Matusik et al. 2003b; Nielsen et al. 2015]. It can
be considered a measure of correlation between samples, and min-
imizing it chooses sampling directions that discriminate between
distinct BRDFs. However, we found that it did not easily extend to
near-field measurements, where a large number of related observa-
tions are made (Fig. 5). The observation matrix Q̃ is now often rank
deficient or nearly so, and close-by observations can drive the con-
dition number very large or even to infinity, reducing its ability to
discriminate and choose optimal directions. This leads to the para-
dox where fewer observations are preferred. In the next section, we
formally derive the expected error, considering both reconstruction
error and noise. For near-field BRDF measurement, we achieve a
dramatic improvement; one to two near-field images is adequate.

There are also many technical limitations of condition number.
First, there are two terms related to error: noise or other imperfec-
tions (deviations from MERL data); and reconstruction error caused
by having too few samples (even in the presence of zero noise or de-
viation). κ(Q̃) only bounds the first term (noise/deviations), but the
major component of the error is actually reconstruction error from
having fewer observations than principal components. Second, con-
dition number considers fractional error, assuming the error is pro-
portional to the signal. However, the accuracy of measurements
from real cameras is determined by a number of factors (shot noise,
read noise, dark current), which are constant or proportional to the
square root of intensity, and not the intensity itself. Indeed, well lit
pixels have less relative noise, and in this paper we more accurately
model the noise as a constant magnitude, independent of the signal.
Third, κ only provides a worst-case bound, while we are often inter-
ested in the average error, say over all of the materials in the MERL
BRDF database. Hence, our optimal sampling directions improve
somewhat on [Nielsen et al. 2015] even for point-sampling.

4 Sampling Error Analysis

In this section, we conduct a novel analysis of the BRDF recon-
struction error from a sparse set of samples. This error can be
minimized to find the optimal set of sampling directions, for both
conventional point-wise BRDF acquisition, and near-field image-
based measurement. For completeness, we consider three sources
of error: deviation from the MERL database, sparse sampling, and
noise in measurement. In practice, deviation error from the MERL
database is not easy to predict, nor is the real noise level easy to
evaluate. Therefore, our practical algorithm will focus on mini-
mizing the reconstruction error from sparse sampling, which is the
main factor in choosing suitable directions for BRDF acquisition.

Deviation from BRDF Model: We assume the BRDF being
measured lies in the subspace spanned by the MERL database (and
encapsulated in Q). If this is not the case, we can only find the
best projection of the MERL BRDF data. This error is present even
when we have all observations. Using pseudo-inverse Q+ of Q,

c = Q+(x− µ) = Q+y = Σ−1V T y, (8)

where we expand Q = V Σ. The resulting deviation error is,

Edeviation = |Qc− y| = |(V V T − I)y|. (9)

Note that V ∈ Rp×k is an orthogonal matrix with V TV = I ,
but since k < p, V V T ∈ Rp×p is not the identity. However,
if y is in the MERL BRDF database, it is given as a column of
Y T = (X − µ̂)T = V ΣUT . Using the SVD decomposition, it is
easy to see that (V V T − I)V ΣUT = 0, since V TV = I .

Therefore, Edeviation = 0 if the material is in the subspace Q
spanned by the MERL database, but will be nonzero if it lies out-
side this subspace. This is an intrinsic property of the material, and
independent of the sampling directions chosen.

Projection to Sampling Directions: Choosing a sparse set of
n sampling directions corresponds mathematically to choosing a
particular selection matrix S ∈ Rn×p. Noting that Q̃ = SQ and
ỹ = Sy by definition, so that SQc = Sy, we have

c̄ = (SQ)+η (Sy) , (10)

where in the last line we consider the regularized inverse of SQ, as
per equation 5, and Sy are the observations we actually make with
a camera or a gonioreflectometer. We use the bar on top of c to
denote the recovered coefficients, with error

c− c̄ =
(
Q+ − (SQ)+η S

)
y. (11)

Finally, the reconstruction error is given by

Erecon =
∣∣∣Q(Q+ − (SQ)+η S

)
y
∣∣∣ . (12)

This is the critical error we need to minimize, by choosing sam-
pling directions (and hence S) optimally. It provides the error in
reconstruction by measuring only a sparse set of samples, and ap-
plies equally whether those are point samples or multiple simultane-
ous image-based measurements. Note that this error exists even for
noise-free measurements, coming purely from reconstruction error
when using a sparse set of samples. (By using log-mapped BRDFs,
we also limit the ability of intense specularities to unduly influence
reconstruction error.) The condition number does not consider this
term directly, but only sensitivity to noise. Nevertheless, we show
in appendix A that minimizing condition number does adjust SQ
to reduce (but not minimize) Erecon.

Figure 3 shows both deviation and reconstruction errors for the
BRDFs in Fig. 2 (using a different set of 90 MERL materials as our
data/training set). As expected, reconstruction error Erecon domi-
nates in all cases. Blue acrylic has high Edeviation since the star-
shaped highlight deviates significantly from the database.

Noise Error: If we do have noisy data, the image observations y
will be corrupted, and we will measure ȳ = y+4, where4 is the
noise or error at each pixel. The resulting error in the coefficients
is given from equation 10 by (SQ)+η (S4). Therefore,

Enoise =
∣∣∣Q (SQ)+η S4

∣∣∣ . (13)



Figure 3: Comparison ofErecon andEdeviation for all materials in
Fig. 2. Reconstruction error Erecon is dominant for most BRDFs.

Conceptually, the condition number seeks to minimize this term.
However, condition number provides only a worst-case bound, as-
suming the noise is proportional to the signal, which is not a correct
assumption for cameras, where noise levels are relatively indepen-
dent of image intensity. Moreover, our main focus is on recon-
struction error from sampling (equation 12) rather than noise; one
typically acquires high-dynamic range images from high-end cam-
eras where noise is not the most significant challenge. Note that the
condition number analysis also does not consider the full process,
including the η-regularization. Finally, our focus is on near-field
capture where we have several, but closely-related observations.
This can lead to a very large condition number, while in fact the
additional observations help in reducing the error.

The total error is written simply as (the less than sign comes from
the triangle equality, since each error term considers the norm),

Etotal ≤ Edeviation + Erecon + Enoise. (14)

Final Error Metric: For simplicity, we do not explicitly consider
the deviation error, but just include it as part of the noise/error 4.
A final issue is choosing y in equation 12 and 4 in equation 13,
since these quantities depend on the measurements, camera noise,
and are not known a-priori. For y, we minimize over all of the
m materials in the MERL BRDF, essentially finding the sampling
directions that best reconstruct the MERL materials. Define yi =
xi − µ where xi ∈ Rp×1 is a vector corresponding to observations
of BRDF i in the MERL database. For the noise, we assume a
constant user-defined parameter β, corresponding to the noise/error
level, β = | 4 |, and use a noise vector O ∈ Rp×1, where each
element is simply 1. This can be seen as the expected magnitude of
gaussian-distributed noise, where β controls the magnitude. Putting
this together, our final expected error is,

E(S)=

(
1

m

m∑
i=1

∣∣∣Q(Q+ − (SQ)+η S
)
yi

∣∣∣)+β
∣∣∣Q (SQ)+η SO

∣∣∣ .
(15)

Note that we add errors from reconstruction and noise. Each term
on the right-hand side is a p × 1 vector, and we take its norm. We
also make explicit the dependence of E on selection matrix S.

In this paper, we focus mainly on minimizing the reconstruction
error Erecon by choosing sampling directions. Therefore, we typi-
cally take β = 0, but we also demonstrate nonzero noise β in sup-
plementary material. Finally, we emphasize that we have so far only
defined error; the next section discusses how to choose the sampling
directions, corresponding to the selection matrix S, to minimize this
expected error. In essence, we seek S = argmin E(S).
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Figure 4: Schematic of near-field reflectance acquisition. The half-
diff angles θh, θd, φd are with respect to the center of the sample.

5 Optimal Sampling Directions

We first describe selection of the optimal sampling directions for
measuring individual light-view pairs in a BRDF, as in [Nielsen
et al. 2015]. We refer to this as point sampling, to distinguish from
the near-field image-based BRDF measurement of our method.

5.1 Point-Sampled BRDF Directions

We consider the whole space of valid directions D = {θh, θd, φd}
in the MERL database. Our goal is to find the optimal subset Dn
with n directions, and form the corresponding n-row selection ma-
trix Sn. For point samples, each row in Sn is simply one direction
in Dn. In other words, Snij = 1 iff Dni = j. The optimal Dn (and
Sn) must be chosen to achieve the minimal error in equation 15.

We solve the optimization based on a numerical gradient descent
framework analogous to [Nielsen et al. 2015], which is shown in
that work to be more efficient and higher-quality than the greedy
method of [Matusik et al. 2003b]. (Standard numerical optimizers
do not work well, given the discrete BRDF space D and integer
steps needed, as well as invalid BRDF regions.) However, we re-
place the condition number with the accurate error in equation 15,
and extend the optimization framework to near-field measurements
in Sec. 5.2. We start with an empty set D0 with no directions in it.
Then we iteratively extend Dn to Dn+1 as follows:

1. Randomly pick t candidate directions fromD−Dn (Typically
we use t = 500.). For each candidate direction d, we form
a selection matrix Sd of Dn ∪ d, and evaluate the expected
error E(Sd) from equation 15. An initial Dn+1 and Sn+1 is
created with that Dn ∪ d which has a minimal E(Sd).

2. Randomly choose one of the n + 1 directions in Dn+1,
which we denote as (θh, θd, φd). Numerically esti-
mate the gradient of the error metric 5E(Sn+1) =

( δE(Sn+1)
δθh

, δE(Sn+1)
δθd

, δE(Sn+1)
δφd

). Move the chosen direc-
tion along 5E with one step-length (initial step-length is 3
cells) if the destination is a valid location in D. Repeat until
convergence (finding a new direction each time).

3. Reduce step-length and repeat step 2 until convergence with
step of 1 cell. Then the final Dn+1 and Sn+1 are formed.

5.2 Near-Field BRDF Directions

We now take advantage of sampling directions for all pixels in an
image, instead of only the center of the image for point sampling.
In general, the optimal directions depend on the camera’s projec-
tion matrix and the size of the planar sample. To develop a general
framework, we assume the image of interest is a circle on the plane



with radius r. We assume the camera moves on a hemisphere a
distance R from the center of the circle, and is always pointed to-
wards the center (i.e., the center pixel corresponds to the center of
the sample). We also assume the image always sees the full sample
(circle of interest). The key variable is the ratio ν = r/R, which
determines the linear field of view when the camera is at the zenith.
The angular field of view α = 2 tan−1 ν, which is the angle we use
to denote our near-field setup. A schematic of the setup is shown
in Figs. 1 and 4. Note that the optimization framework is general,
and can also apply to many other configurations. We discuss one-
camera multiple light and one-light multiple view cases in Sec. 8.

The goal is still to find an optimal subset of camera directions Dn.
In this case, each direction represents the direction to the camera
with respect to the center pixel. However, the corresponding selec-
tion matrix is no longer a n-row matrix. We replace Sn with S̄n in
near field acquisition. One direction in Dn forms a set of rows in
S̄n, each of which corresponds to one pixel sample in an image. In
general, there will be many more rows than for point-sampling, but
many of the directions will be very closely related. Our error metric
addresses this directly, and equation 15 still accurately predicts re-
construction error. We can now directly use S̄n instead of Sn, and
iteratively add directions fromD0 toDn as before. To validate the
convergence of our method, we repeated the optimization 50 times
with different random conditions, and fields of view. The results
all converge well. The supplementary material shows convergence
results for n = 2 near-field sampling with 25◦ field of view.

6 Evaluation with Simulations for Near-Field

We now evaluate the minimization of our error metric for near-
field image-based BRDF measurement, using simulations with the
MERL BRDF database. As shown in Fig. 5, our new error met-
ric has significant advantages over using the condition number for
the near-field case. (Visual results on rendered spheres are consis-
tent with these numerical errors; results from minimizing condition
number are often even worse than point-sampled measurements,
far off from ground truth). Moreover, as seen in Fig. 6, our new
image-based method is much more efficient than point-sampling;
both methods capture similar images of a flat sample, but we make
use of the full 2D image. Section 8 applies the framework to other
configurations like fixed camera with multiple lights, or vice versa.

The setup is shown in Fig. 4. For simplicity, we assume a distant
light source, and a near-field camera. In a single image, we capture
a 2D slice of the BRDF (we consider a circular patch). Since we
are assuming a flat sample with distant lighting, the illumination
direction is the same everywhere, but the viewing direction varies
at each pixel, enabling us to capture multiple observations simulta-
neously. It is clearly better to have a wider field of view to capture
greater view variation, but this may require large samples and close
cameras. In fact, we show that a relatively narrow field of view of
about 25◦ suffices for two-shot BRDF acquisition.

We minimize equation 15, choosing the optimal light-view direc-
tions, as explained in Sec. 5.2. To evaluate the reconstruction error
on the MERL BRDF, we use a slightly different set of directions
using 90 training BRDF samples, testing on the 10 other materi-
als not used at all in computing optimal directions. (We use the
same training/test materials as [Nielsen et al. 2015] to enable direct
comparisons to their approach.)

Figure 5 compares our average normalized reconstruction RMS er-
rors for the unknown materials for several fields of view, as a func-
tion of the number of images, and to optimizing condition number
alone. As shown in appendix B, condition number is actually a rea-
sonable heuristic for point-sampled BRDF measurement [Nielsen
et al. 2015], although our error metric performs somewhat better

Figure 5: Comparison of errors on unknown samples from our
method, and from minimizing condition number, for near-field re-
flectance acquisition with different fields of view. It is clear that we
produce better results for near-field reflectance acquisition.

Figure 6: Average RMS error over unknown samples for near-field
reflectance acquisition. We plot the results for a number of different
field of view angles. These results clearly show the benefits of our
method, often requiring an order of magnitude fewer samples than
point-sampled BRDF measurement.

even in that case. However, it breaks down for near-field acqui-
sition as seen in Fig. 5. With several correlated view directions,
condition number becomes very large, losing the ability to discrim-
inate between different sets of light-view directions. In some cases,
it oscillates or does not decrease with increasing samples, while our
method always performs well. The new error metric is essential for
determining optimal light-view directions in the near-field case.

In Fig. 6, we compare RMS errors for several fields of view,
and to point-sampled BRDF measurement (the top red curve is
from [Nielsen et al. 2015] while the improved orange curve is us-
ing our error metric for the point-sampled case). We see that near-
field reflectance acquisition requires almost an order of magnitude
fewer images than point-sampled BRDF measurement. Also note
that near-field acquisition converges quickly with increasing field
of view; while larger fields of view help, 25◦ is already nearly
best (supplementary shows similar curves even for extreme 85◦

and 175◦ fields of view). In fact, errors are comparable to standard
spherical image-based BRDF measurement [Marschner et al. 2000]
(with optimal directions chosen by our error metric; see Fig. 19 in
appendix B). However, our approach applies more generally, to flat
samples that cannot be obtained or wrapped on a sphere.

Figure 7 shows how errors decrease as more training materials are
added to the database (in random order), showing a steady decrease



Figure 7: Average RMS error versus number of materials in
database for 2 shot near-field sampling with 25◦ field of view.
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Figure 8: Tabulation of one and two near-field acquisition direc-
tions for fields of view ranging from 15◦ to 45◦. Note that direc-
tions correspond closely to mirror reflection, imaging the highlight
shape, and more grazing angles for Fresnel and other effects.

θd = 50◦
θd = 23◦

θd = 79◦

View View 

View 

Figure 9: Illustration of one- and two-shot camera/light configura-
tions for a linear field of view of 25◦.

with more example BRDFs. Note that the MERL subspace depends
on the specific BRDFs used, and the error curve can therefore in-
crease slightly with the addition of a new material.

Note that with two-shot imaging, we can obtain essentially the same
accuracy as 20 samples for point-sampled BRDF measurement, and
even single-shot near-field acquisition achieves similar accuracy as
about 5 samples for point-sampled BRDF measurement. These
comparisons, simulated on the MERL data, are shown in Fig. 2.
(We omit green fabric and silver metallic paint, whose results are
very similar to black soft plastic and two layer silver respectively).
We see that two-shot acquisition is adequate in nearly all cases. In
some examples like pink jasper, specular violet-phenolic and white
fabric, a single near-field image is comparable to 20 point-sampled
images. In a few cases, like blue acrylic, two near-field images
are required to achieve reasonable results; severe ringing is present
in reconstruction from a single image. For very broad specularities
like light red paint, we do not observe the full extent of the highlight
in any single image, and slightly underestimate highlight width.

(a) Setup A (b) Setup B

Figure 10: Photograph of our acquisition setup A and B. In setup
A, a 6-axis industrial robot precisely positions the camera, and an
illumination-arc positioned at φ = 0◦ illuminates the sample with
halogen lights in 7.5◦ θd intervals. In setup B, a high-angular-
resolution spherical gantry positions the light. A DSLR camera is
positioned by utilizing the two arms of the gantry and a mirror.

Finally, in Fig. 8, we tabulate our optimal 1,2 directions for near-
field angles of 15◦, 25◦, 35◦ and 45◦. Note that these directions
are with respect to the center of the sample; the local view direction
will vary at each pixel. For one image, we capture a slightly off-
specular direction (θh = 3◦) at an angle of incidence of about 50◦.
Similarly, for two images, the first direction for 15◦ field of view
is an exact specular reflection at 60◦, although this varies some-
what with field of view. This is as expected, imaging the details
of the specular highlight, around the center of the sample, and also
accords well with measurements previously used in the appearance
industry [Hunter and Judd 1939]. For most materials, this measure-
ment also captures the overall diffuse color. The second direction
usually varies somewhat from the specular (more for small fields of
view, less for larger fields of view where diffuse and specular re-
flection are often both available in the same image). Intuitively, the
second direction measures Fresnel effects at grazing angles (large
θd for fields of view 25◦ and higher). It can also help refine the
diffuse shading, especially for materials with broad specular lobes
that cover all of the first image. Figure 9 illustrates the one- and
two-shot light-view pairs for field of view 25◦.

7 Results: Near-Field BRDF Measurements

In this section, we apply the reconstruction method, and opti-
mal sampling directions (Sec. 6, Fig. 8), to image-based near-field
BRDF acquisitions of several real samples captured at two differ-
ent laboratories located in different continents (UCSD in USA and
DTU in Denmark). The two laboratory setups deviate slightly and
will be described next. We used both approaches to demonstrate the
robustness of our method with a variety of simple capture scenar-
ios, which do not require exact configuration or precise alignment
between views. We used a portion of the input sample with field of
view of 25◦, since that achieves near-optimal results (Fig. 6).

Setup A (DTU): In this setup, we utilize a high-precision robot-
vision system to precisely position the camera relative to a material
sample (Fig. 10 left). The angular error of this positioning is less
than 1 degree. The camera used is a Point Grey Grasshopper 3, in-
dustrial CCD camera, mounted with a Kowa LM16SC 16mm lens.
The light-source consists of arc holding halogen light-bulbs, evenly
distributed from 0◦ to 90◦ in 7.5◦ steps.

Setup B (UCSD): We use a (distant) Dolan-Jenner DC 950 light
source mounted on one arm of a spherical gantry; the gantry con-
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Figure 11: Results for near-field BRDF acquisition on real materials. Materials labeled with (A) and (B) are captured by setups A and B.
The material is shown first, followed by comparisons of input photographs and renderings with the measured BRDFs. These include both
original views, as well as two new lightings and views not used as input. All renderings use the BRDF reconstructed from the two captured
images. Good accuracy is obtained for all materials. We also visualize the full BRDF by rendering a sphere lit by an environment map. Note
that we use optimal directions in Fig. 8 from the full MERL data, which differ slightly from those using 90 materials in Fig. 2.

trols two high-precision arms having an angular resolution of 0.1◦.
However, the gantry’s viewing arm/camera is too far away to obtain
near-field images directly. We instead manually position a Canon
EOS 5D Mark III camera mounted on a tripod close to the input
sample (Fig. 10 right). In order to correctly position the camera, we
place the gantry’s two arms at the mirrored direction of the desired
viewing location, and adjust the camera until it points towards both
arms’ center through a mirror. The final position of the camera is
obtained through camera-calibration using a checkerboard.

The setups presented above have different limitations, in that the

light-source confines setup A to a limited set of view/illumination
configurations, whereas the manual positioning of the camera limits
the precision of setup B. In both cases, we find the configuration
that best matches the optimum directions in Figs. 8, 9. We thus
demonstrate that our method is robust towards small variations in
view/light configurations, while still obtaining very good results.

For acquisition, we capture multiple exposures to produce high-
dynamic range images; each exposure is averaged over multiple
images to reduce noise. The resulting values are then log-mapped,
since our framework works with log-mapped BRDFs. Light inten-
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Figure 12: Results for single image near-field BRDF acquisition on real materials, comparing one and two-shot reconstructions.

sity is calibrated using a Spectralon material sample. By proper
modeling of the intrinsic and extrinsic scene-parameters, all ob-
served pixels (BRDF values) can be combined to form x̃ or ỹ =
x̃− µ̃, using their corresponding view/light coordinates. With this,
BRDF coefficients c can be solved from equation 4, and the full
BRDF x recovered using equation 2, with a final step involving un-
doing the logarithmic mapping. We emphasize that all results in
this section were obtained from only two image configurations of a
standard flat planar sample, and in some cases only a single image.

Figure 11 shows several real samples, whose BRDFs we measured
using two-shot near-field acquisition (analogous to Fig. 2 for MERL
simulations). The first 5 rows are captured using setup A, and the
last 5 rows with setup B. The colors differ slightly between the in-
set photograph and the comparisons, because of the off-white color
of the actual light source. We compare the captured image (con-
sidering only the circular region of interest, per Fig. 4) with the
rendering for both light-view input configurations. We also show
two additional light-view configurations for validation, which were
not used at all as an input. The validation configurations are cho-
sen with (θh, θd, φd) = (0◦, 60◦, 0◦) ; (22.5◦, 22.5◦, 0◦) to verify
both specular and diffuse appearance. For visualization, we also
show a rendered sphere with the corresponding BRDF lit by an
environment map. The accompanying video shows the red cover,
white paper and silver macbook under changing viewing directions
with two illumination directions, comparing real and rendered re-
sults, including fading out the illumination to observe highlights
without saturation. It can be seen that the real and rendered im-
ages match well. Even when the actual material has some noise
or a slightly bumpy surface, we recover a smooth BRDF that is an
accurate representation, for both diffuse and more glossy materials.

Finally, Fig. 12 shows what can be achieved with a single-shot cap-
ture (using setup A). In many cases, one input image is adequate
to achieve reasonable results. However, the second input image
does help refine the specular reflection somewhat, when comparing
the rendered spheres. For example, white paper and yellow note-
book are largely diffuse in the first image, and accurate specular
and Fresnel information is only achieved at grazing angles in the
second view. Moreover, in some cases, the diffuse color and shad-
ing can be somewhat refined by using both images.

We briefly discuss some limitations. As with all reconstruction
methods based on the MERL data, we are ultimately limited by

the subspace spanned by that data. Our simulations and experi-
ments indicate excellent agreement with reference measurements,
but there is unavoidable error when the material deviates from the
MERL subspace. Moreover, for small field of view and BRDFs
with broad highlights, our measurements may not capture the full
range of the highlight in a single image, leading to under-estimating
its width in reconstruction (light red paint in Fig. 2). For very dark
materials, the noise can be over-fit, causing a blue tint for the black
metal in the fifth row of Fig. 11. Finally, we do not account for
surface imperfections or normal maps, which also contribute to the
“noise” above. Nevertheless, as seen in Fig. 11, we produce accu-
rate smooth BRDFs consistent with the input data.

8 Extension: Fixed Camera Setup

Our error analysis framework and optimization method for sam-
pling directions is general, and could be applied in future to many
different configurations. In this section, we consider a one-camera
multiple-light case, where we use a single near-field viewing di-
rection, while enabling multiple lighting directions. As before, we
show that good results are achieved with two-shot acquisition with
two lights. Note that we optimize for lights, and the single view
direction, but do so while constraining the camera view to be the
same (fixed) for all lighting directions. Using a fixed camera view
may also enable simpler acquisition hardware in future. We also
briefly discuss the symmetric case of a single fixed light direction,
with multiple views. We consider a field of view of 25◦.

Figure 13 shows the error of fixed camera, multiple light, and fixed
light, multiple view, as a function of the number of images, also
comparing to our point-sampling and near-field results. As before,
our error analysis framework is essential for finding optimal direc-
tions, and condition number does not yield meaningful results.

The errors for one or two images are significantly lower than for
point-sampling, and only somewhat more than the unconstrained
near-field case considered previously (note that one shot acquisi-
tion is the same for fixed or free camera setup). However, the lack
of flexibility when fixing light or view, leads to a slower decrease
in error for more images. Figure 14(a) indicates the optimal two-
image configuration for fixed camera and changing light. The cam-
era is at a 64◦ angle to the surface, with light sources positioned to
enable observation of both diffuse (light close to zenith) and specu-



Figure 13: Average RMS error over unknown samples for fixed
camera/multiple lights, and fixed lighting direction/multiple views.
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Figure 14: Optimal configurations and angles for single view, mul-
tiple light and single light, multiple view cases, analogous to Fig. 9.
Angles are shown as standard in-out and Rusinkiewicz coordinates.

lar reflectance (light close to mirror direction). Having the camera
at an angle to the surface enables capture of some Fresnel informa-
tion, but a fixed camera setup will make it harder to fully reproduce
grazing angles. We also show the analogous configuration for fixed
light with multiple views in Fig. 14(b). Since fixed light/fixed view
configurations are symmetric with similar error, we focus on the
fixed camera setup, with only a single viewing direction, and there-
fore simpler calibration and alignment.

Figure 15 shows some synthetic MERL materials reconstructed
with fixed view and two images. Note that the first input image is
mostly specular while the second is mostly diffuse (dark for specu-
lar materials like metallic paint). The results are generally good in
most cases. However, some ringing can be observed on the mostly
diffuse white fabric. This corresponds to the higher error in Fig. 13,
compared to the near-field case where both light and camera can
move. Figure 16 shows comparable results for two real materi-
als captured with setup B. We also show a validation view (spec-
ular with light/camera at 45◦) not used as input. Good results are
achieved with the two-shot fixed camera setup, although there is
minor variance in the shape of the specular highlight.

Simple Extension to Spatially-Varying BRDFs: So far, we
have not considered spatial variation. We take a first step with a
simple extension for specific objects, which have two or more ma-
terials that have good coverage over the field of view (such as stars
spread out on a background). The fixed-camera setup is ideal for
this purpose, since no alignment/calibration between different near-
field views is required. Note that this is an initial effort, and further
work is required to extend the method to general SVBRDFs.

If we can cluster which pixels correspond to which material, we

Material Sample image
1

Sample image
2

Near field 25◦

2 (fixed view)
Reference

blue-
metallic-

paint2

green-
fabric

light-
red-paint

white-
fabric

Figure 15: MERL BRDFs reconstructed with fixed view and two
images. This configuration works well for most materials.

can separately estimate the BRDFs of the materials, using only the
subset of pixels for that BRDF. The key requirement is coverage
over the field of view, to enable one to see the full range of viewing
angles. Using only a subset of pixels does not significantly increase
error, especially since a 2D image already contains thousands to
millions of observations. In practice, we cluster based on color
observed in the second (diffuse) captured image. BRDFs are then
estimated separately for each cluster. Figure 17 shows results for
two greeting cards with spatial variation, acquired using setup B. In
this example, we consider the full field of view, rather than only a
circular region. As seen in Fig. 17, we cluster into three materials,
and recover full BRDFs for all three materials. The rendered images
are close to the captured, with the expected smoothing of surface
roughness. (Microstructure and normal variations in the real object
cause glints and rough specularities, which increase the apparent
size of the highlight for the real object). The validation view, not
used as input, also matches well.

9 Conclusions and Future Work

We have developed a method for acquisition of a full measured
isotropic 3D BRDF from only two perspective images of a flat sam-
ple, lit with a directional light source. This is at least an order of
magnitude reduction in effort over previous comparable techniques
to measure a full BRDF, and requires only a standard flat homoge-
neous material sample. Our method is based on using the full 2D
image information from a near-field view, and finds the best light-
ing and viewing directions by minimizing an estimate of the recon-
struction error. We provide tables of these directions for different
fields of view of the sample, which can directly be used by other re-
searchers. Our major technical contribution is a formal derivation of
reconstruction error, which provides a framework for minimization
for both point-sampled and near-field BRDF acquisition, producing
better results than the previous condition number heuristic.

In future work, we would like to explore other implications of our
method. The new reconstruction error framework could have broad
impact in problems like many light methods or computation of light
transport matrices, where one seeks to reconstruct from a sparse set
of samples. Finally, the one or two-shot nature of our method
opens the possibility of designing new simple hardware, with light
sources and camera in fixed position.
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Appendix A: Details of Reconstruction Error

We analyze equation 12 in more detail, also relating it to the condition num-
ber metric. It is convenient to denote y = Qc, where c is the accurate
coefficient vector to reconstruct the BRDF. In this case, noting Q+Q = I ,

Erecon =
∣∣∣Q(

Q+ − (SQ)+η S
)
Qc

∣∣∣ =
∣∣∣Q(

I − (SQ)+η SQ
)
c
∣∣∣ .
(16)
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Figure 17: Acquisition of spatially-varying BRDFs from two images with fixed camera. Note the close match of captured and rendered
images, including in the validation view, not used as input (rightmost column). Rendered images are under environment lighting. We also
show the 3 material clusters used in each case, and spheres rendered with the full BRDFs recovered for each of the 3 materials.

Now, let us denote the SVD of SQ = Q̃ as AΛBT . From equation 5,
(SQ)+η = Q̃+

η = BΛ+
η A

T . Now,

(SQ)+η (SQ) = BΛ+
η A

TAΛBT = BΛ′BT , (17)

where Λ′ = Λ+
η Λ is a diagonal matrix. If the singular values in Λ are

σ (and those in Λ+
η are σ/(σ2 + η)), then the singular values in Λ′ are

σ2/(σ2 + η). Further simplifying,

Erecon =
∣∣∣Q(

I −BΛ′BT
)
c
∣∣∣ =

∣∣∣Q(
BΓBT

)
c
∣∣∣ , (18)

where Γ is also a diagonal matrix with singular values 1 − σ2

σ2+η
=

η/(σ2 + η). To understand Erecon, we care about the singular values in
Γ. The largest singular value is given by the minimum σmin, with value
η/(σ2

min + η). In general, we will reduce Erecon if we avoid small σ.
Indeed, the condition number optimization affects the σ values and tries to
make σmin larger to reduce the condition number. However, it is not ex-
plicitly minimizing the above expression. In contrast, our approach explic-
itly considers the end-to-end system, as well as the effect of Q, the MERL
BRDF materials encoded in the coefficient vector c, and the full spectrum
of singular values, to fully minimize the error Erecon.

Appendix B: Point-Sampled BRDF Measurement

The main text discusses near-field image-based BRDF measurement. Here,
we show that the new error metric also somewhat improves point-sampled
BRDF acquisition. We compare our results to [Nielsen et al. 2015] with
5 directions in Fig. 18. (The dotted black curve at the bottom is the lower
bound when using all of the input directions, essentially the unavoidable
error Edeviation.) Note that this evaluation is identical to Fig. 8 in their
paper, using the same graphs for their method, as well as parametric fits
and the industry-standard 5 directions in [Westlund and Meyer 2001]. It is
clear that we have somewhat lower error. This is not surprising since these
results are computed assuming the observations are accurate without noise,
while the condition number metric measures only sensitivity to noise, not
reconstruction error. The supplementary material shows similar results for
an example with 20 measurements and 2% noise. Nevertheless, minimizing
the condition number is a reasonable heuristic for this setup.

We can also plot the average error over the unknown samples in the MERL
BRDF database vs. the number of measurements n in Fig. 19. For both stan-
dard point-sampled acquisition, and the image-based spherical acquisition
method of [Marschner et al. 2000] (extended to use optimal directions com-
puted with either our error metric or using condition number), our method

Figure 18: Comparison of reconstruction with our new optimized 5 direc-
tions, and those from [Nielsen et al. 2015], parametric fits, and industry-
standard directions. Our method (green curve) produces lower error than
previous work (blue curve) on each BRDF.

Figure 19: Reconstruction error versus number of measurements. We
obtain a smooth graph, strictly lower error than previous work.

gives somewhat lower error. Another important observation is the shape of
the curves. The result from [Nielsen et al. 2015] oscillates somewhat, since
the condition number metric is not directly tied to (or always monotonic
with) the actual error. By minimizing the actual expected reconstruction
error, we obtain a smooth graph. The supplementary material provides our
improved point-sampling directions, and comparisons for a few materials
from the MERL database. In some cases we do qualitatively better, while
there is a minor improvement in other cases. In general, our 5 directions is
comparable to 20 samples using the previous condition number metric.


